Cubic B-spline curve approximation by curve unclamping
نویسندگان
چکیده
منابع مشابه
Knot Placement for B-Spline Curve Approximation
Curve approximation still remains one of the di cult problems in CAD and CAGD. One of the key questions in this area is to pick a reasonable number of points from the original curve which can be interpolated with a parametric curve. This paper highlights the use of arc length and curvature characteristics of the given curve to extract the interpolation points. An algorithm is also provided to h...
متن کاملA fast algorithm for cubic B-spline curve fitting
Based on the matrix perturbation technique. a fast-fitting algorithm using uniform cubic B-spline curves is presented. Our algorithm entails much less floating-point operations when compared with Gaussian elimination method. In addition, our result can be applied to solve the closed cubic B-spline curve-fitting problem. Experimental results are included for a practical version. These experiment...
متن کاملAn extension algorithm for B-splines by curve unclamping
This paper presents an algorithm for extending B-spline curves and surfaces. Based on the unclamping algorithm for B-spline curves, we propose a new algorithm for extending B-spline curves that extrapolates using the recurrence property of the de Boor algorithm. This algorithm provides a nice extension, with maximum continuity, to the original curve segment. Moreover, it can be applied to the e...
متن کاملCurve Matching by Using B-spline Curves
This paper presents an algorithm for estimating the control points of the B-spline and curve matching which are achieved by using the dissimilarity measure based on the knot associated with the B-spline curves. The B-splines stand as one of the most efficient curve representations and possess very attractive properties such as spatial uniqueness, boundedness and continuity, local shape controll...
متن کاملControl point adjustment for B-spline curve approximation
Pottmann et al. propose an iterative optimization scheme for approximating a target curve with a B-spline curve based on square distance minimization, or SDM. The main advantage of SDM is that it does not need a parameterization of data points on the target curve. Starting with an initial B-spline curve, this scheme makes an active B-spline curve converge faster towards the target curve and pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer-Aided Design
سال: 2010
ISSN: 0010-4485
DOI: 10.1016/j.cad.2010.01.008